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NOTE 

Variable Pseudoviscosity 
in One-Dimensional Hyperbolic Difference Schemes 

One often wishes to compute the strength of the shock-wave and the fluid-flow 
parameters resulting from a sudden release of energy as from a high-explosive 
detonation or an impulsive electrical discharge. When it is desired to follow such 
disturbances to large distances from the source, a numerical integration of the 
appropriate difference equations entails use either of a very large number of 
mesh points or of a variable mesh spacing. Since computer memory requirements 
and computation time increase at least as the number of mesh points carried, 
it can be seen that there are compelling reasons for using a variable mesh spacing. 
When the von Neumann-Richtmyer pseudo-viscosity method [l] is used for 
following the propagation of shock waves, however, changes in mesh spacing 
at shock fronts give rise to spurious fluctuations in density and entropy, which 
do not dissipate with time. [2] We have found that variation of the pseudo- 
viscosity with the number of mesh points between the origin and the primary 
shock front can be used to eliminate these fluctuations. 

The von Neumann-Richtmyer pseudoviscous term q is usually written in the 
form 

a,24 < 0, 
a,# 3 0 

or 

q = 1 P(~A42, Au/Ax < 0, 
0, Au/Ax > 0 

in the difference equations, where p is the fluid density, u the particle velocity, and 
Ax the mesh spacing. The parameter 01 determines the number of mesh points 
over which a physically discontinuous shock is spread by the difference scheme. 
The resulting shock-front “thickness” is about 3~1dx. 

The pseudoviscous terms have been used here in a centered-difference formula- 
tion of the Lagrangean fluid-flow equations very similar to that of Richtmyer and 
Morton. [3] These equations have been integrated for cylindrical and spherical 
shock waves in air from the strong shock region to the near-acoustic region, 
necessitating several increases in mesh spacing. Both ideal gas and nonideal gas 
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equations of state have been used. All computations were performed with a Control 
Data 6600 computer (which carries a 48-bit mantissa in all our calculations.) 

At each time step the difference equations were integrated to about 5 mesh 
points beyond the primary shock front. When the pressure at the last mesh point 
had increased by a predetermined amount above the initial pressure, an additional 
point was added to the mesh. Let us define: 

m = allowed maximum number of mesh points; 
n = number of mesh points over which the integration is 

carried out at any time step; 
01 = pseudoviscosity parameter; 

01~ = initial value of 01 (in the interval [j, 21); 
PO = initial pressure of the unshocked gas; 
P, = pressure at the nth mesh point; 

AP = allowed pressure increase at the nth mesh point. 

When P, > P, + AP, the value of n is increased by one for the next time step, 
and (Y is determined by 

When P, > PO + AP, the mesh spacing Ax is doubled for the next time step, 
n set equal to m/2, and 01 reset to 01~ . The thermodynamic and fluid-flow parameters 
for the new mesh are computed from the values for the old so as to conserve mass 
and energy. 

With the customary usage of the pseudoviscosity technique, with 01 = 01~ at 
all time, shock waves are “smeared” over a constant number of mesh points. 
When the mesh spacing is then doubled, the shock is momentarily compressed 
into half the number of mesh points, and the difference scheme reacts with spurious 
fluctuations in some variables which do not dissipate. With the variable pseudo- 
viscous term, the ratio of the shock “thickness” at one time step to the “thickness” 
at the preceding time step is at most (1 + 2/m). This ratio is unity when the mesh 
size is doubled, since 01 is halved when Ax is doubled. The shock thus occupies 
a constant fraction of the mesh in use throughout the calculation. With m = 500 
in our calculation, no fluctuations in pressure, density, or temperature were ob- 
served. Furthermore, there were no cumulative errors which we could detect 
arising from the gradual increase in the pseudoviscosity term. A computation of 
the spherical shock wave from a point source of energy gave essentially exact 
agreement with the work of Brode [4] who used a somewhat more complicated 
scheme for enlarging the dimensions of the mesh. 
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